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Motivation

Camacho-Collados & Pilehvar

Figure 3: An illustration of the meaning conflation deficiency in a 2D semantic space around
the ambiguous word mouse. Having the word, with its di↵erent meanings, repre-
sented as a single point (vector) results in pulling together of semantically unre-
lated words, such as computer and rabbit.

to two di↵erent senses of mouse, i.e., rodent and computer input device. See Figure 3 for an
illustration.5 Moreover, the conflation deficiency violates the triangle inequality of euclidean
spaces, which can reduce the e↵ectiveness of word space models (Tversky & Gati, 1982).
In order to alleviate this deficiency, a new direction of research has emerged over the past
years, which tries to directly model individual meanings of words. In this survey we focus
on this new branch of research, which has some similarities and peculiarities with respect
to word representation learning.

2.3 Sense Representation

A solution to addressing the meaning conflation deficiency of word embeddings is to repre-
sent individual meanings of words, i.e., word senses, as independent representations. Such
representations are generally referred to as sense representations. Sense representation tech-
niques can be broadly classified depending on the way sense distinctions are made. The
optimal way of partitioning the meanings of words into multiple senses has long been the
point of argument (Erk, McCarthy, & Gaylord, 2009; Erk, 2012; McCarthy, Apidianaki, &
Erk, 2016). Traditionally, as in word sense disambiguation (see Section 2.4), computational
techniques have relied on fixed sense inventories produced by humans, such as WordNet
(Miller, 1995). A sense inventory6 is a lexical resource, such as a dictionary or thesaurus,
that lists for each word the possible meanings it can take. Sense distinctions can also be
defined through word sense induction, i.e., automatic identification of a word’s senses by
analyzing the contexts in which it appears.

Generally, sense representations can be divided into two main paradigms depending on
how the sense distinctions are defined:

5. Dimensionality was reduced using PCA; visualized with http://projector.tensorflow.org/.
6. In Section 4.1 we provide an overview of few of the most popular sense inventories.
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Sense embedding

Learn the representation of senses instead of words
A Survey on Vector Representations of Meaning

Figure 4: Unsupervised sense representation techniques first induce di↵erent senses of a
given word (usually by means of clustering occurrences of that word in a text
corpus) and then compute representations for each induced sense.

in Section 3.1.3 we will briefly overview contextualized embeddings, an emerging branch
of unsupervised techniques which views sense representation from a di↵erent perspective.

3.1.1 Two-Stage Models

The context-group discrimination of Schütze (1998) is one of the pioneering works in sense
representation. The approach was an attempt to automatic word sense disambiguation in
order to address the knowledge-acquisition bottleneck for sense annotated data (Gale et al.,
1992) and reliance on external resources. The basic idea of context-group discrimination
is to automatically induce senses from contextual similarity, computed by clustering the
contexts in which an ambiguous word occurs. Specifically, each context C of an ambigu-
ous word w is represented as a context vector ~vC , computed as the centroid of its content
words’ vectors ~vc (c 2 C). Context vectors are computed for each word in a given corpus
and then clustered into a predetermined number of clusters (context groups) using the Ex-
pectation Maximization algorithm (Dempster, Laird, & Rubin, 1977, EM). Context groups
for the word are taken as representations for di↵erent senses of the word. Despite its sim-
plicity, the clustering-based approach of Schütze (1998) constitutes the basis for many of
the subsequent techniques, which mainly di↵ered in their representation of context or the
underlying clustering algorithm. Figure 4 depicts the general procedure followed by the
two-stage unsupervised sense representation techniques.

Given its requirement for computing independent representations for all individual con-
texts of a given word, the context-group discrimination approach is not easily scalable to
large corpora. Reisinger and Mooney (2010) addressed this by directly clustering the con-
texts, represented as feature vectors of unigrams, instead of modeling contexts as vectors.
The approach can be considered as the first new-generation sense representation technique,
which is often referred to as multi-prototype. In this specific work, contexts were clustered
using Mixtures of von Mises-Fisher distributions (movMF) algorithm. The algorithm is
similar to k-means but permits controlling the semantic breadth using a per-cluster con-
centration parameter which would better model skewed distributions of cluster sizes.
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2 main issues

1. The number of senses is not well defined
2. The context itself becomes ambiguous...
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Figure 4: Unsupervised sense representation techniques first induce di↵erent senses of a
given word (usually by means of clustering occurrences of that word in a text
corpus) and then compute representations for each induced sense.
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The approach can be considered as the first new-generation sense representation technique,
which is often referred to as multi-prototype. In this specific work, contexts were clustered
using Mixtures of von Mises-Fisher distributions (movMF) algorithm. The algorithm is
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Outline

Focus on 3 algorithms:
1. Clustering

Schutze 1998, Reisinger & Mooney 2010
2. Online matching

Neelakantan, Shankar, Passos & McCallum 2014
3. Knowledge

Chen, Liu & Sun 2014



Clustering

2 steps:
1. For each word, cluster the contexts in which this word

appears (cosine-similarity in the word space)
2. Learn the representation of each sense (= context cluter)

mantic similarity of both isolated words and words
in context. The approach is completely modular, and
can integrate any clustering method with any tradi-
tional vector-space model.

We present experimental comparisons to human
judgements of semantic similarity for both isolated
words and words in sentential context. The results
demonstrate the superiority of a clustered approach
over both traditional prototype and exemplar-based
vector-space models. For example, given the iso-
lated target word singer our method produces the
most similar word vocalist, while using a single pro-
totype gives musician. Given the word cell in the
context: “The book was published while Piasecki
was still in prison, and a copy was delivered to his
cell.” the standard approach produces protein while
our method yields incarcerated.

The remainder of the paper is organized as fol-
lows: Section 2 gives relevant background on pro-
totype and exemplar methods for lexical semantics,
Section 3 presents our multi-prototype method, Sec-
tion 4 presents our experimental evaluations, Section
5 discusses future work, and Section 6 concludes.

2 Background

Psychological concept models can be roughly di-
vided into two classes:

1. Prototype models represented concepts by an
abstract prototypical instance, similar to a clus-
ter centroid in parametric density estimation.

2. Exemplar models represent concepts by a con-
crete set of observed instances, similar to non-
parametric approaches to density estimation in
statistics (Ashby and Alfonso-Reese, 1995).

Tversky and Gati (1982) famously showed that con-
ceptual similarity violates the triangle inequality,
lending evidence for exemplar-based models in psy-
chology. Exemplar models have been previously
used for lexical semantics problems such as selec-
tional preference (Erk, 2007) and thematic fit (Van-
dekerckhove et al., 2009). Individual exemplars can
be quite noisy and the model can incur high com-
putational overhead at prediction time since naively
computing the similarity between two words using
each occurrence in a textual corpus as an exemplar
requires O(n2) comparisons. Instead, the standard

... chose Zbigniew Brzezinski 
for the position of ...
... thus the symbol s position 
on his clothing was ...
... writes call options against 
the stock position ...
... offered a position with ...
... a position he would hold 
until his retirement in ...
... endanger their position as 
a cultural group...
... on the chart of the vessel s 
current position ...
... not in a position to help...
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Figure 1: Overview of the multi-prototype approach
to near-synonym discovery for a single target word
independent of context. Occurrences are clustered
and cluster centroids are used as prototype vectors.
Note the “hurricane” sense of position (cluster 3) is
not typically considered appropriate in WSD.

approach is to compute a single prototype vector for
each word from its occurrences.

This paper presents a multi-prototype vector space
model for lexical semantics with a single parame-
ter K (the number of clusters) that generalizes both
prototype (K = 1) and exemplar (K = N , the total
number of instances) methods. Such models have
been widely studied in the Psychology literature
(Griffiths et al., 2007; Love et al., 2004; Rosseel,
2002). By employing multiple prototypes per word,
vector space models can account for homonymy,
polysemy and thematic variation in word usage.
Furthermore, such approaches require only O(K2)
comparisons for computing similarity, yielding po-
tential computational savings over the exemplar ap-
proach when K � N , while reaping many of the
same benefits.

Previous work on lexical semantic relatedness has
focused on two approaches: (1) mining monolin-
gual or bilingual dictionaries or other pre-existing
resources to construct networks of related words
(Agirre and Edmond, 2006; Ramage et al., 2009),
and (2) using the distributional hypothesis to au-
tomatically infer a vector-space prototype of word
meaning from large corpora (Agirre et al., 2009;
Curran, 2004; Harris, 1954). The former approach
tends to have greater precision, but depends on hand-
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Online matching

Joint learning of word & sense representations:
Ï Context represented by the average of word vectors
Ï Sense induced by the closest context
(k senses per word)
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Figure 4: Unsupervised sense representation techniques first induce di↵erent senses of a
given word (usually by means of clustering occurrences of that word in a text
corpus) and then compute representations for each induced sense.

in Section 3.1.3 we will briefly overview contextualized embeddings, an emerging branch
of unsupervised techniques which views sense representation from a di↵erent perspective.

3.1.1 Two-Stage Models

The context-group discrimination of Schütze (1998) is one of the pioneering works in sense
representation. The approach was an attempt to automatic word sense disambiguation in
order to address the knowledge-acquisition bottleneck for sense annotated data (Gale et al.,
1992) and reliance on external resources. The basic idea of context-group discrimination
is to automatically induce senses from contextual similarity, computed by clustering the
contexts in which an ambiguous word occurs. Specifically, each context C of an ambigu-
ous word w is represented as a context vector ~vC , computed as the centroid of its content
words’ vectors ~vc (c 2 C). Context vectors are computed for each word in a given corpus
and then clustered into a predetermined number of clusters (context groups) using the Ex-
pectation Maximization algorithm (Dempster, Laird, & Rubin, 1977, EM). Context groups
for the word are taken as representations for di↵erent senses of the word. Despite its sim-
plicity, the clustering-based approach of Schütze (1998) constitutes the basis for many of
the subsequent techniques, which mainly di↵ered in their representation of context or the
underlying clustering algorithm. Figure 4 depicts the general procedure followed by the
two-stage unsupervised sense representation techniques.

Given its requirement for computing independent representations for all individual con-
texts of a given word, the context-group discrimination approach is not easily scalable to
large corpora. Reisinger and Mooney (2010) addressed this by directly clustering the con-
texts, represented as feature vectors of unigrams, instead of modeling contexts as vectors.
The approach can be considered as the first new-generation sense representation technique,
which is often referred to as multi-prototype. In this specific work, contexts were clustered
using Mixtures of von Mises-Fisher distributions (movMF) algorithm. The algorithm is
similar to k-means but permits controlling the semantic breadth using a per-cluster con-
centration parameter which would better model skewed distributions of cluster sizes.
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Knowledge

Use of a knowledge base (e.g., Wordnet, Babelnet, Conceptnet)
1. Initialize each sense vector as the average of word vectors

used in the textual definition of this sense
2. Disambiguate each word of a large corpus on this basis
3. Joint learning of word & sense representations

Camacho-Collados & Pilehvar

Figure 6: Knowledge-based sense representation techniques take sense distinctions for a
word as defined by an external lexical resource (sense inventory). For each sense,
relevant information is gathered and a representation is computed.

embeddings for semantic similarity and dialogue state tracking by exploiting a number of
monolingual and cross-lingual linguistic constraints (e.g., synonymy and antonymy) from
resources such as PPDB and BabelNet.

In fact, as shown in this last work, knowledge resources also play an important role in
the construction of multilingual vector spaces. The use of external resources avoids the need
of compiling a large parallel corpora, which has been traditionally been the main source
for learning cross-lingual word embeddings in the literature (Upadhyay, Faruqui, Dyer, &
Roth, 2016; Ruder, Vulić, & Søgaard, 2017). These alternative models for learning cross-
lingual embeddings exploit knowledge from lexical resources such as WordNet or BabelNet
(Mrksic et al., 2017; Goikoetxea, Soroa, & Agirre, 2018), bilingual dictionaries (Mikolov, Le,
& Sutskever, 2013b; Ammar, Mulcaire, Tsvetkov, Lample, Dyer, & Smith, 2016; Artetxe,
Labaka, & Agirre, 2016; Doval, Camacho-Collados, Espinosa-Anke, & Schockaert, 2018) or
comparable corpora extracted from Wikipedia (Vulić & Moens, 2015).

4.3 Knowledge-Based Sense Representations

This section provides an overview of the state of the art in knowledge-based sense repre-
sentations. These representations are usually obtained as a result of de-conflating a word
into its individual sense representations, as defined by an external sense inventory. Figure 6
depicts the main workflow for knowledge-based sense vector representation modeling tech-
niques. The learning signal for these techniques vary, but in the main two di↵erent types of
information available in lexical resources are leveraged: textual definitions (or glosses) and
semantic networks.

Textual definitions are used as main signals for initializing sense embeddings by sev-
eral approaches. Chen, Liu, and Sun (2014) proposed an initialization of word sense em-
beddings by averaging pre-trained word embeddings trained on text corpora. Then, these
initialized sense representations are utilized to disambiguate a large corpus. Finally, the
training objective of Skip-gram from Word2vec (Mikolov et al., 2013a) is modified in order
to learn both word and sense embeddings from the disambiguated corpus. In contrast,
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Figure 6: Knowledge-based sense representation techniques take sense distinctions for a
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Summary

Ï Focus on 3 approaches to sense embedding
Ï Potential improvement by graph techniques
Ï Other approaches exist (e.g., multilingual)
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Figure 3: An illustration of the meaning conflation deficiency in a 2D semantic space around
the ambiguous word mouse. Having the word, with its di↵erent meanings, repre-
sented as a single point (vector) results in pulling together of semantically unre-
lated words, such as computer and rabbit.

to two di↵erent senses of mouse, i.e., rodent and computer input device. See Figure 3 for an
illustration.5 Moreover, the conflation deficiency violates the triangle inequality of euclidean
spaces, which can reduce the e↵ectiveness of word space models (Tversky & Gati, 1982).
In order to alleviate this deficiency, a new direction of research has emerged over the past
years, which tries to directly model individual meanings of words. In this survey we focus
on this new branch of research, which has some similarities and peculiarities with respect
to word representation learning.

2.3 Sense Representation

A solution to addressing the meaning conflation deficiency of word embeddings is to repre-
sent individual meanings of words, i.e., word senses, as independent representations. Such
representations are generally referred to as sense representations. Sense representation tech-
niques can be broadly classified depending on the way sense distinctions are made. The
optimal way of partitioning the meanings of words into multiple senses has long been the
point of argument (Erk, McCarthy, & Gaylord, 2009; Erk, 2012; McCarthy, Apidianaki, &
Erk, 2016). Traditionally, as in word sense disambiguation (see Section 2.4), computational
techniques have relied on fixed sense inventories produced by humans, such as WordNet
(Miller, 1995). A sense inventory6 is a lexical resource, such as a dictionary or thesaurus,
that lists for each word the possible meanings it can take. Sense distinctions can also be
defined through word sense induction, i.e., automatic identification of a word’s senses by
analyzing the contexts in which it appears.

Generally, sense representations can be divided into two main paradigms depending on
how the sense distinctions are defined:

5. Dimensionality was reduced using PCA; visualized with http://projector.tensorflow.org/.
6. In Section 4.1 we provide an overview of few of the most popular sense inventories.
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